Images of Galois representations attached to low weight Siegel modular forms

Ariel Weiss

University of Sheffield

a.weiss@sheffield.ac.uk

Explicit and computational approaches to Galois representations
4th July 2018
The classical case

- $f = \sum_{n=0}^{\infty} a_n q^n \in M_k(N, \epsilon)$ normalised Hecke eigenform, $k \geq 2$

- Associated ℓ-adic Galois representation

 $$\rho_\ell : \text{Gal}(\mathbb{Q}/\mathbb{Q}) \to \text{GL}_2(\overline{\mathbb{Q}_\ell})$$

 unramified for all $p \nmid \ell N$ with

 $$\text{Tr} \rho_\ell(\text{Frob}_p) = a_p, \quad \text{det} \rho_\ell = \epsilon \chi_{\ell}^{k-1}$$

- Associated mod ℓ Galois representation

 $$\overline{\rho}_\ell : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \text{GL}_2(\overline{\mathbb{F}_\ell})$$
When are ρ_ℓ and $\overline{\rho}_\ell$ irreducible?

Example: a reducible ℓ-adic Galois representation

$$G_{12}(z) = \frac{691}{65520} + \sum_{n=1}^{\infty} \sigma_{11}(n)q^n \quad \sim \sim \sim \rightarrow \quad \rho_\ell \cong 1 \oplus \chi_{11}$$

Theorem (Ribet)

If f is cuspidal, then:

1. ρ_ℓ is irreducible for all ℓ;
2. $\overline{\rho}_\ell$ is irreducible for all but finitely many ℓ;

Example: a reducible mod ℓ Galois representation

$$\Delta(z) = 1 + \sum_{n\geq 2} \tau(n)q^n \quad \sim \sim \sim \rightarrow \quad \overline{\rho}_{691} \cong 1 \oplus \overline{\chi}_{691}^{11}$$

Theorem (Ribet, Momose)

*If f is not CM, then the image of ρ_ℓ is as large as possible for all but finitely many ℓ.***
“Cuspidal automorphic representation of $\text{GSp}_4(\mathbb{A}_{\mathbb{Q}}) + \text{ conditions at } \infty$”

- has weights (k_1, k_2), $k_1 \geq k_2 \geq 2$
- has a level N
- has a character ϵ
- has Hecke operators T_p and Hecke eigenvalues a_p

4 types of cuspidal Siegel modular form:

- General
- Theta lifts/Automorphic inductions
- Saito-Kurokawa/CAP
- Yoshida/endoscopic

\{ reducible Galois representations \}

High weight: $k_2 > 2$
Low weight: $k_2 = 2$
The high weight case: $k_2 > 2$

- Associated ℓ-adic Galois representation
 \[\rho_\ell : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \text{GSp}_4(\overline{\mathbb{Q}_\ell}) \]

 unramified for all $p \nmid \ell N$ with
 \[\text{Tr} \rho_\ell(\text{Frob}_p) = a_p, \quad \text{sim} \rho_\ell = \epsilon \chi_\ell^{k_1 + k_2 - 3} \]

- Associated mod ℓ Galois representation $\overline{\rho}_\ell : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \text{GSp}_4(\overline{\mathbb{F}_\ell})$

- ρ_ℓ is de Rham kinda nice for all ℓ, and is crystalline nice if $\ell \nmid N$

- The Hecke eigenvalues satisfy the generalised Ramanujan conjecture

Theorem

1. *(Ramakrishnan)* If ρ_ℓ is nice and $\ell > 2(k_1 + k_2 - 3) + 1$, then ρ_ℓ is irreducible;

2. *(BLGGT)* $\overline{\rho}_\ell$ is irreducible for 100% of primes.

3. *(Dieulefait-Zenteno)* The image of $\overline{\rho}_\ell$ contains $\text{Sp}_4(\mathbb{F}_\ell)$ 100% of primes.
The low weight case: $k_2 = 2$

- Associated ℓ-adic Galois representation

$$\rho_\ell : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \text{GSp}_4(\overline{\mathbb{Q}_\ell})$$

unramified for all $p \nmid \ell N$ with

$$\text{Tr} \rho_\ell(\text{Frob}_p) = a_p, \quad \text{sim} \rho_\ell = \epsilon \chi_\ell^{k_1-1}$$

- Associated mod ℓ Galois representation $\overline{\rho}_\ell : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \text{GSp}_4(\overline{\mathbb{F}_\ell})$

Theorem (W.)

1. If ρ_ℓ is nice and $\ell > 2(k_1 - 1) + 1$, then ρ_ℓ is irreducible;
2. $\overline{\rho}_\ell$ is irreducible for all but finitely many such primes;
3. The image of $\overline{\rho}_\ell$ contains $\text{Sp}_4(\mathbb{F}_\ell)$ for all but finitely many such primes.
A theoretically checkable condition

Theorem (Jorza)

If \(\ell \nmid N \) and the \(\ell \)-th Hecke polynomial has distinct roots, then \(\rho_\ell \) is nice.

Corollary

If \(\ell > (2k_1 - 1) + 1, \ell \nmid N \), and the \(\ell \)-th Hecke polynomial has distinct roots, then \(\rho_\ell \) is irreducible.

Theorem (W.)

The \(\ell \)-th Hecke polynomial has distinct roots for 100% of primes. Hence, \(\rho_\ell \) is nice for 100% of primes.
Sketch proof for modular forms (Ribet).

If \(f \in S_k(N, \epsilon) \leftrightarrow \rho_\ell \) and \(\rho_\ell \) is reducible then

\[
\text{Kinda nice} \implies \rho_\ell \simeq \psi \oplus \varphi \chi_\ell^{k-1}
\]

1. **CFT**: \(\psi, \varphi \) correspond to Hecke (in this case Dirichlet) characters.
2. Get an equality of partial L-functions

\[
L^*(f \otimes \psi^{-1}, s) = \zeta^*(s)L^*(\varphi \psi^{-1}, s + k - 1);
\]
3. The RHS has a pole at \(s = 1 \), but the LHS is holomorphic.

Idea: use the modularity of the subrepresentations of \(\rho_\ell \) to get a contradiction on the automorphic side.
Irreducibility and modularity II

Idea: use the modularity of the subrepresentations of ρ_ℓ to get a contradiction on the automorphic side.

Key lemma (W.)

Either ρ_ℓ is irreducible, or it splits as a direct sum of two-dimensional representations which are irreducible, regular and odd.

Theorem (Taylor)

If ℓ is sufficiently large, and $\rho : \text{Gal}(\overline{Q}/Q) \to \text{GL}_2(\overline{Q}_\ell)$ is irreducible, regular, crystalline and odd, then ρ is potentially modular.

- If ρ_ℓ is reducible then $\rho_\ell \simeq \sigma_1 \oplus \sigma_2$.
- If ρ_ℓ is also crystalline, find automorphic representations π_1, π_2 of $\text{GL}_2(A_K)$ corresponding to $\sigma_1|_K, \sigma_2|_K$.
- Apply a standard L-functions argument.
Irreducibility in general

Conjecture

If π is a cuspidal automorphic representation of $GL_n(A_K)$ then ρ_ℓ is irreducible for all primes.

Known results:

- $n = 2$: Ribet
- $n = 3$: Blasius-Rogawski if K totally real, π essentially self dual

Partial results:

- (Barnet-Lamb–Gee–Geraghty–Taylor) if K is CM and π is “extremely regular”, then ρ_ℓ is irreducible for 100% of primes.
Thank you for listening!